본문 바로가기

반응형

밴드갭

(3)
양자점 활용하는 광전소자의 발광효율 향상 방법 제시 기초과학연구원(IBS) 조민행 분자 분광학 및 동력학 연구단장(고려대 화학과 교수) 연구팀은 양자점 디스플레이(QLED) 등 양자점(Quantum Dot)을 활용하는 광전소자의 발광효율을 향상시킬 수 있는 새로운 방법을 제시했다. 양자점은 지름이 수 나노미터(nm) 수준인 반도체 입자다. 입자 크기에 따라 다른 주파수의 빛을 방출하는 등 독특한 광학적 성질을 지녀 QLED 등 다양한 광전소자로 응용되고 있다. 양자점과 같은 반도체는 전자가 존재할 수 있는 두 개의 밴드를 갖는다. 전자가 차 있는 아래쪽의 밴드를 ‘가전자대’, 전자가 비어있는 위쪽 밴드를 ‘전도대’ 그리고 이 둘 사이의 에너지 차이를 밴드갭(Band Gap)이라 부른다. 밴드갭보다 큰 외부 에너지(빛)를 받으면 가전자대에 있던 전자는 전도..
IBS 다차원 탄소재료 연구단, 2차원 흑린 이용 ‘선폭 0.43nm 전도성 채널’ 구현 반도체는 회로의 선폭을 가늘게 만들수록 성능 향상에 유리하다. 단위 면적당 더 많은 소자를 집적할 수 있기 때문이다. 산업계에서는 선폭이 5nm 정도인 ‘5나노 반도체’가 최근 상용화에 들어섰다. 기초과학연구원(IBS) 다차원 탄소재료 연구단 이종훈 그룹리더(UNIST 교수)와 펑딩 그룹리더(UNIST 교수) 연구팀은 2차원 흑린을 이용해 선폭 4.3Å(0.43nm)의 전도성 채널을 구현했다. 이는 나노미터 한계를 뛰어넘어 옹스트롬(Å‧1Å은 0.1nm) 단위 선폭의 초극미세 반도체 소자 가능성을 실험적으로 제시한 것이다. 이번 연구는 울산과학기술원(UNIST), 포항공대(POSECH)와 공동으로 진행했다. 2차원 흑린은 ‘포스트(post) 그래핀’ 시대의 주역이 될 반도체 소재로 꼽힌다. 두께가 원자 ..
4층짜리 단결정 그래핀 대면적 합성법 개발 흑연의 원자 한 층인 그래핀은 우수한 전기전도도와 신축성을 갖춘 데다 투명해서 반도체 전극으로 많이 쓰인다. 또 몇 개의 단층 그래핀이 겹쳐있는지에 따라 응용성이 크게 달라진다. 그래핀을 여러 겹 쌓으면 집적회로의 소형화가 가능하고, 반도체의 특징인 밴드갭을 조절할 수 있다. 그러나 이제까지 고품질 다층 그래핀을 균일하게 넓은 면적으로 기르기는 어려웠다. * 밴드갭(Band Gap) : 물질 속 전자들이 모여 있는 부분과 전자들이 전혀 없는 부분 사이 일종의 장벽으로, 이 공간을 자유전자들이 돌아다니면서 전기를 통하게 한다. 밴드갭이 작을수록 전기가 잘 통하며(도체) 멀수록 전기가 통하지 않는다(부도체). 기초과학연구원(IBS) 나노구조물리연구단 이영희 단장과 삼성종합기술원(반 루엔 뉴엔), 부산대(정세..

반응형